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1.0 INTRODUCTION

This is the final engineering report on Task D of NASA 
Contract No.

NAS6-2307. This task comprised a study of experiment requirements, of

technical characteristics, and of the GEOS-C radar altimeter related analyses.

In addition to the work reported herein, a study of engineering 
test data re-

quirements was also conducted; results of this.activity 
were documented in a

report distributed in December, 1973.

Chapter II of this report contains statistical 
analyses related to deter-

mination of wave height resolution achievable as a function 
of system character-

istics and averaging period. An equally important topic of this chapter is the

desirability of using computer procedures to compensate 
for altitude tracker

time-jitter.

Chapter III examines data processing considerations 
for the GEOS-C

system. An extensive analysis of the spatial filter effect 
is given and

results of a computation of geoidal power spectral density, based on Skylab

altimeter data, is displayed and interpreted in terms of projected 
GEOS-C

random errors. This information is then used in deriving minimum-mean-square

filter procedures for both geoid undulaCion and.slope data.

Chapter IV examines the characteristics of mean 
received waveforms as a

function of off-nadir angle. This information is then used to obtain tracker

bias as a function of sea state and pointing angle. The angle estimation

process proposed by the GEOS-C hardware contractor (General 
Electric) is

also investigated from a standpoint of achievable angular resolution.
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2.0 ANALYSIS OF GEOS-C WAVEHEIGHT RESOLUTION

2.1 Summary of Results and Recommendations

The main body of this section is devoted to an analysis of waveheight

resolution, in significant waveheight units, achievable with the GEOS-C

altimeter, and the effect of uncorrected altitude tracker time-jitter on

resolution. The final results of this analysis are shown in graphic form in

Figures 2.1 and 2.2. Results for pulse lengths of 10 and 12.5 ns are given

because currently available GEOS-C test data shows the pre-detection pulse

width to be - 13 ns at the 6 dB points. Since a square-law detector is used,

this implies a post-detection pulse width of 13 ns at the 12 dB points and

we estimate that the video filter would increase this pulse width to ~ 10 ns

at the 3 dB level. Figure 2.1 shows that for the 10 ns pulse length with

expected time jitter (~3 ns), 80 percent of the observations will be within

±25 percent of the correct value for significant wave heights (H1/3) of 
2 3

meters. Below this H1/3 value the resolution degrades rapidly. For a time-

jitter of 6 ns, the corresponding H1/3 value is - 3.5 meters. To allow a

comparison with other results, this figure also shows a "one-sigma" confi-

dence level result; here the 25% resolution value intersects the curve at

H1/3 = 2.4 meters. We do not recommend use of this bound.

Figure 2.2 shows similar results for a 12.5 us pulse width. Here the 6 ns

jitter case ±25% resolution point is seen to occur at - 4.25 meters. For

an rms tracking jitter of 12 ns (which is considered to be in the category of

substandard data) the ±25% resolution point is -5.15 meters. Note that if the

12 ns rms jitter is assumed to be correctable (at H1/3 ~ 3.6 meters),- tracking

jitter correction is equivalent to an extension of the averaging period by a

factor of 2.5 (waveheight resolution is proportional to the square root of

the averaging period).

Both Figures 2.1 and 2.2 are based on an averaging period of 20 seconds.

This value was used since we feel it represents an approximate upper bound

on averaging period, unless a priori information is available regarding ocean

surface homogeneity. .Since high seas are of quite low probability on a global

scale, it would be highly desirable to be able to collect experimental wave-

height data as it exists, in the planned GEOS-C calibration area. For an

experiment that requires high seas (e.g., the North Atlantic in the winter

months), the acquisition of aircraft sea-truth data is a formidable task.
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To provide some insight into the problem of extending the data averaging

period, two randomly selected sea-truth charts are shown in Figures 2.3 and.

2.4. These were supplied by NOAA during the Skylab program's SL-2 and SL-3

missions. Figure 2.3 shows a 3 meter H1/3 isocontour crossing for pass 9

and 2 meter isocontour crossings for pass 8 - for the wind-driven (non-swell)

data shown. The scaled time periods for the ground track to traverse these

areas are 10 and 18.6 seconds. In Figure 2.4 the subsatellite path crosses

two 1-meter contours in approximately 20 seconds.

Based on the above discussed results, the -3 ns rms tracking jitter

level anticipated for the GEOS-C altimeter is seen to produce a relatively

small degradation in wave height resolution. Therefore, under assumed nominal

altimeter performance we do not recommend corrections in the waveform averaging

process to compensate for the altitude tracker time-history. If, after launch,

for some reason the altitude data quality should seriously degrade (>12 ns

rms noise) the question of time-jitter correction should be re-examined. The

need for corrections in the waveform averaging process for deterministic

orbital effects is an unexamined question. For an assumed altitude rate of

change of 50 meters/second, due to orbital eccentricity, and a tracking loop

correlation interval of -50 milliseconds, the altitude change during the

correlation period is 16 ns. Hardware test data should be available in the

near future to permit an assessment of the effect of such altitude rates on

tracker variance.

2.2 Analysis of Tracking Time-Jitter Effects and Waveheight Resolution*

Our main purpose in this section is to anlayze the effect of altitude

tracker-induced time-jitter in the sample-and-hold (S & H) data on waveform

averaging and waveheight resolution. Because of the small tracker (and thus

S & H gate position) standard deviation (-3 ns) relative to the "flat sea"

rise time, we desire to examine the effect of neglecting tracker time-jitter

in the reconstruction process. Figure 2.5 shows presently planned waveform

data processing procedures and the overriding importance of this effect.

In the following analysis we examine; the uncertainty in the estimate of

-the received waveform as a function of averaging period. Since a single

received waveshape is an ensemble member of a random process, the greater the

number of waveforms averaged the lower the uncertainty in mean value and thus

*A major part of this section was contributed by A. C. Nelson.
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the greater the waveheight resolution. The upper limit on averaging period

is determined by ocean surface homogeneity; typical data relating to waveheight

spatial variability was given in Figures 2.3 and 2.4. Receiver noise can be

shown to produce little effect on waveheight resolution for pre-detection

signal-to-noise ratios 10 dB, and this effect will not be considered.

In the following we will assume that the point-target pulse shape and

the waveheight probability distribution are both Gaussian functions. This

will give rise to an average waveform which is a cumulative Gaussian, as shown

in Figure 2.6, and will permit closed form-analysis of several important

parameters. Since the received waveform corresponds to the integral of a

Gaussian which in turn is the convolution of pulse shape and waveheight Gaussian

functions, the composite variance is:

2 2 2a
0 = 0 + 0
c p t

or from Figure 2.6 the composite standard deviation in nanoseconds is

T = (.508 H, )2 + (.602 T )2

where H1/3 is a significant waveheight in feet and T is the 3 dB video pulse

width in nanoseconds. Therefore, a ramp period, Tr (the dotted curve in

Figure 2.6) may be defined as:

T =2.58 258 Hi2 + .362 T
r 1/3: p

2 2

= 1.31 H1/3 + 1.4 T

This represents the time expanse of,the ramp period as defined by the projection

of the mid-point slope as shown in Figure 2.6. On this basis the ramp period

is equivalent to 1.55 T for the case of H1/3 = 0. Other rise time definitions

could have been used. For example, rise time of pulse-like waveforms is

sometimes taken as the 7 and 93 percent amplitude points. The definition

used here is convenient because of its relationship to the mid-point slope.

First we consider the statistics of tracking jitter as these are affected

by quantization and correlation properties of the altimeter system. In the
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Skylab altimeter, altitude tracker standard.deviation and quantizer step-.

size were comparable in magnitude; therefore, on the average, the output

signal constituted roughly a 4 level discrete random process. With the

much smaller step-size used in the GEOS-C system, the range .tracker signal

more nearly resembles a continuous-time process.

Statistics of the mean-waveforms derive both from the chi-squared dis-

tribution of the basic received waveforms and from the superimposed time

jitter of the tracking process. Since 100 statistically independent waveforms

are received per second and the tracker jitter decorrelates in about 10 wave-

forms, the central question is the time-wise behavior of the combined process.

Starting with the normalized cumulative Gaussian to describe the mean

waveform, (t-)/Ts

g(t) = (u) = f exp -x dx,
s

the probability that the jitter is kT (where T = 5/32 ns is the GEOS-C

quantization value) is given by the discrete Gaussian density function,

(2k+1) - (2k-l)T k = +1, +2, +3'"Pk 2 c O. ," 2a. "' - -' -

PO k = 0,
-T

where p is the mean on the time scale corresponding to the normalized mean

voltage equal to 0.5, and aj is the standard deviation of the jitter process.

We first consider the idealized case in which the tracker signal only

executes step changes every 10 pulses and then examine the validity of this

simple model. Assume that Nt = 10 independent samples of the tracker signal

and Nprf = 100 independent waveform samples are available per second; then

it is desired to relate the variance of the average of N waveforms to the

parameters Ts , H1 /3, and d i ( assumed to be 3 ns), in order to provide some

knowledge of sea stat resolution. The time varying received signal has a

X2 (chi-square) distribution with 2 degrees of freedom, with mean and standard

deviation both equal to g(t + kT) where kT is the tracking jitter. With no

jitter the average of N = 100 independent or uncorrelated signals would have
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a variance equal to g2(t)/100. With tracking jitter the average of 100 such

waveforms would have a mean and variance as determined below.

The following derivation is limited to the determination of the mean

and variance because the average of fifteen X
2 variables can be assumed to

have approximately a Gaussian distribution. Typically, 'the X2 distribution

with 30 degrees of freedom is approximated by the Gaussian distribution.

This would occur on averaging 15 X
2 variables each with two (2) degrees of

freedom because of the additive property of the X
2 distribution. The

determination of the mean is not affected by the correlation between suc-

cessive values of the tracking jitter and the results given below are general

in this respect. On the other hand, the correlation of the tracking jitter

does affect the variance but this is minor when the sample size is large.

The effect is small because: (1) jitter variance is small compared to the

composite variance, and (2) relative length of the averaging period is

large, (say, greater than 1 second) as compared to the less than 0.1 second

period over which the correlation is positive. Utilizing these remarks, the

following derivations are performed.

2.2.1 Computation of the Mean With Jitter Present

Let the average of r = 10 waveforms (for 0.1 sec.) be denoted by v(t)

and for N waveforms (or N/100 seconds) by ;(t). The jitter value is fixed

for r waveforms and then shifts to another value independently selected from

the statistical distribution. This is an approximation to the actual waveform

process with autocorrelation function given by Table 3.1, of [1] which shows

that on the average, the actual waveforms shift and decorrelate in-0.l seconds.

The average of N waveforms will be given by:

= = rnkIk/N, n = C nk = N/r,

rn
k

where Vk =  j(t+kr)/rnk
j=l

E{) = En E- (=In)

= En{E rnk g(t+kT)/N}
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= rnPk g(t+kT)/N = pkgk, = g(t+kT).

If the jitter variable is denoted by X1 and the composite variable

(waveform) by X2, the sum (for the case t = p which occurs at the midpoint

of the ramp)

E Pk g(t+kT)

can be approximated very closely for small T (jitter step in ns), by the

integral:

Prob {X1 is in the } • Prob. {X2 is less than } dk

P interval (k,k+dk) or equal to

and this is equivalent to:

P{X1 2

which is equal to 0.5 for t = i'because X1 is N(O,oj)* and X 2 is N(0,Ts).

If t = + Ts say, it can similarly be shown that the sum Zpk g(t+kT) is

approximately equal to

Prob. {X2  _ X1 + Ts }

where X1 and X2 are distributed as above and thus X2 -X-T is N(-Ts ,  +T

As an example, for T = 8.8, j. = 3, T 2+0 = (9.3)2

T1
Prob. u < =S 0.9462] = 0.8279

2 2

Thus the mean is biased.slightly downward at t = P+Ts; without jitter it is

0.8413. Figure 2.7 shows the mean twyeform distortion due to uncorrected

tracking jitter.

Note that this result can be generalized to any multiple m of Ts to

yield

E Pk g(t+kT)

= Prob. {X < X +mT $
2 - 1 s

This notation denotes X is normally distributed with mean 0 and standard

deviation a..J
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given by

mT

Prob. u <
where aT 2 C+T

J s

Ts  (0.508 H1 / 3 + (.602 Tp )

j = standard deviation of tracking jitter (in ns)

H1/3 = waveheight (in feet)

2.2.2 Computation of the Variance With Jitter Present

The variance of v(t) is computed by use of the formula,

2 2a {2 = E a-{v1n) + a E-{In.

See reference [2] for these general formulas for the unconditional

means and variances in terms of the conditional means and variances. The

subscript variable indicates the one with respect to which the moment is

being taken conditional on the remaining variables being fixed.

n f rnkvk = E 1 2n2 2
En N = En 2 r nkg (t+kr)/rnN J

1 2

2 2 E rn k k
.an E{n} a n E N

2 E xnqg(t+kT)
=an N

= E gk{nPk(l-Pk)} - 2 E gk gpk i

n k<k

Substituting the- results in equation (2) yields

2- 1I 21 2 2
2a rn Pkgk+n g pk(lP PkP gkg"
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Using the following relationship

2 2 2
(Zpkgk) ) kk + 2=k F 'kk gek

The above becomes

2 =(r+l) 2 1 2
0{ = rn Pkgk n (k kg)

If n = 10, r = 10, N = 100,

2- 11 2 1 2
{} = 100 A - 1 (Pkgk

5

The calculations become tedious for T = - ns, as there are at least

2 x 6 x 32/5 = 87 intervals for inclusion of 95% of the jitter values. An

approximation was run by using T = 40/32 ns and the results extrapolated

to T = 5/32 ns for the case in which

T = 8.8 ns
s

a. = 3 ns

t = and t = 1 + Ts .

In this example, at t = p,

2
S 0.2643, pkk = 0.5

E{v} = 0.5.

Therefore with jitter

Y2{v} .(.064) 2

Without jitter, assuming independence, a2{}1 = (.05)2

At t = 1i + Ts, Pk = 0.6927, E Pkg = 0.828.

With jitter E{v} = 0.828

2{} = (.087)2

Without jitter, 02{ } = (:084)2

These results are shown in Figure 2.8.
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2.2.3 Comments

Some comments or remarks concerning these results are in order. First

suppose that the results are compared to that of averaging 100 independent

waveforms with jitter present (no correlation). For a = 3 ns, Ts=8.8 ns,

t=p + Ts, and for an approximation to be subsequently discussed,

2 (1 waveform with jitter) = (corrected mean) + T
s

= (.836)2

a2 (average of 100 waveforms) = (.0836)2

which may be compared with the .087 results of the previous, more exact,

analysis. Also note that the approximation which assumes that a. is fully

correlated over 10 pulses

2 22 average of . (corrected mean) + 1 (.90)2
100 waveforms Nprf  Ts e

(where Nprf = 100, NT = 10)

is seen to result in the same order of approximation. As expected, variance

of the true process is midway.between two limiting cases of tracker signal

correlation. The term a /T 2re in the above equations represents a trans-
3 s 2 2

formation, by Taylor series expansion, of nanoseconds to volts . Note that

the formula for a2{ } is directly proportional to 1/n, i.e., the variance

decreases as n, or the standard deviation as 1/ /IT. Also for r = 1, the

result reduces to

2 2 2
}= n p Z kk - n p kgk)

This result is applicable when the autocorrelation function is zero.

The variance of = increases slowly as r increases for N fixed (=100 say)

as tabulated below for N.= rn = 100, t = p + Ts

r n a2 {I

1 100 .0070
2 50 .0071
4 25 .0072

10 10 .0074
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This shows the results to be largely insensitive to the detailed averaging

properties of the tracking loop.

2.2.4 Sea State Resolution

Suppose that only significant waveheight is subject to change, then

T =  0.25 8 H2 + .362 T2

s 1/3 P

= 0.258 H2/3 + 56.63

for T = 12.5 ns. Assume that a. is given or has been measured to be 3 ns.

The following figure illustrates the effect of SWH on the total variance

of the process.

H = ft.
1.0 1/3 =  ft.

0.8413 1/3 =9 ft.

.5

11 +Ts 1  s+Ts2

The difference-of two values (for different HI/3 values) is

2 2
T2  T
s2 sl 2 H 2
0.258 1/3,2 1/3, 1

'The difference T2 - T is estimated by the difference in the estimated
s2 sl

values obtained from the data or by squaring the values read from the cumula-

tive distribution curves at 0.8413 and taking their difference. The values
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from the curve are denoted by Ts2 and Tsl, respectively. This difference

is dependent on the H1/3 values through the following approximation:

^2 ^2 2 2
Ts2 - T = 0.258 (H/3,2- H /3,1)

.. 2 2
Ts2 - Tsl .0158 (H /3,2 - HI/3,1),

and for H =/3,= 6 ft, H1/3,2 = 1, 3, 9, and 18 ft, the difference T - Tsl

ranges from -0.56 to 4.61 ns. For H1/3,1 = 9 ft and H1/3,2 = 1, 3, 6, and

18 feet, Ts2 - Tsl varies from -1.29 to 3.91 ns. (See the following

tabulation).

(Approx.) (Approx.)

H1/3,1 = 6 ft. Ts2 sl H1/3,1 = 9 ft. Ts2 - sl

H1/3,2 = 1 -0.56 H /3,2 =1 . -1.29

3 -0.43 3 -1.16

9 0.72 6 -0.72

18 4.61 18 3.91

Now consider the precision of the estimated variances (standard

deviations) as read from the averaged waveform. The variance of the

ordinate =(t) was obtained earlier as a function of n (no. of 0.1 second

intervals), pk, and gk. For t = i + Ts , H1/3 = 9 ft, the estimated variance
2.

was given as 0.0076 volts 1

This variance in volts 2 can be transformed to nanoseconds2 by using

the Taylor series expansion of the Gaussian D(to; T s). (The inverse of

this was used earlier to convert jitter variance to a transformed jitter
2

variance in volts ). Given t = p + T ands

v P (to; T ) + (t-to) D (to; T ) +

O{v} 1 a{t}.
" T A2es
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Thus

a{t) = T /2e a{v

and using a2{V} = 0.0076, the variance of a 1 second average, the following

values are obtained for several averaging periods.

Table 1

o{t}, vJI{t} vs. Averaging Time (Seconds) at t = 1 + Ts , v(t) = 0.8413

Averaging Time
(Seconds) a{t} caY{t}

1 3.17 4.48

10 1.01 1.43

20 0.72 1.02

40 0.51 0.72

80 0.36 0.51

120 0.29 0.41

Assuming that the difference in two times has a standard deviation of / o{t}

(since the times are assumed to be equal under the hypothesis of no difference)

then the above results need to be multiplied by i/ = 1.414, see last column

of Table 1. Hence, for average waveform data collected over one second, the

standard deviation of the observed difference is estimated.to be 4.48 ns.

In comparing data for H1/3 = 9 ft with that for H1/3 = 1 ft, the

expected or average difference of Ts2 - Tsl = 1.29 ns. The probability that

the hypothesis Tsl - Ts2 will be rejected is given by the power of the test

(see [3], p. 229).

= 1.29 = 1.265, Power = .24 for a= .05
1.02

i.e., for a level of significance of a = 0.05 (a 5% risk of stating that

the H1/3's differ when in fact they do not differ), the probability that the
1/3's

l/3's will be indicated as different is approximately 0.24. If X = 2.8,

the power is 0.80, ird.

Ts2 - T81 = 2.8 (1.02) = 2.86,

a value exceeded only by comparing H1/3 
= 9 ft vs. H 1/3 18 feet.
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Similar results may be obtained using a chi-squared formulation. For

an averaging period of 10 seconds, first assume that 10 waveforms are

available,averaged over 1 second. From the above tabulation the standard

deviation to be associated with a one-second average waveform is 4.48 ns.

In order to obtain uncertainty values for an 80% confidence bound, chi-

squared (X2) values for 10 and 90% levels are used, i.e.,

2 2
2 na 2 no

MAX 2 MIN 2X 10% 
X 9 0%

9(4.48) 9(4.48)2
4.17 14.68

aMA = 6.58 oaM = 3.51,

where n = number of degrees of freedom. Using the previous equation

Ts2 -Tsl= .0158 (H1 / 3 , 2 - H2

with the above range of a values; as an example if one H1/3 value is taken

as 8 ft, we find the other to be 16.1 ft. As another example for H1/3,1

3 ft, we find H1/3,2 = 14 ft. This means that the probability that a wave-

height observation will lie within these values is 80 percent.

The preceeding analysis has focused on the general statistical aspects

of the mean waveform, variance, and waveheight estimation areas. This work

will next be used as a framework for deriving an approximate, closed form

solution to the waveheight resolution question. The initial problem formula-

tion assumed Gaussian functional forms for both the system waveshape and the

waveheight probability distribution function based on justifications given

in [4] and [5], and because this leads to analytical tractability. Without

the latter assumption, as must be the case with initial radar altimeter

waveform studies, a considerably more complex deconvolution approach is

'needed to extract waveheight information. That is, for the Gaussian

assumption only a differentiation is required to recover the combined system

waveshape and waveheight distribution. Except for the increase in process
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variance which may result from differentiation, we know that the Ts points

on the mean waveform will directly map on the differentiated waveforms.

For this reason the following waveheight analysis considers .only the average

received waveforms. For future reference, note that variances will propa-

gate through differentiation (for a continuous-time analogy) as follows:

for the signal power spectrum, which at the output of the square-law

detector is the convolution of the IF spectrum, S(w), the differentiated
2

process variance, a , is
P

a2 = fw2 S(w) de.

For the noise spectrum (this analysis is assumed free of'receiver noise)

an identical form applies. Therefore, the differentiation operation'will

alter the signal-to-noise relationship only tQ the extent that these spectra

differ (c.f., [1] for a computation of S(w)). For essentially band limited

processes, this factor is rather small.

To proceed; the previous analysis showed that the waveform standard

deviation in volts could be transformed into time uncertainty a(t), as

T 72e 0.36T

t in seconds.

Also as previously discussed, the approximate total time uncertainty

is due to the uncorrelated variance of Ts along with aj; the waveform

statistics and the tracking jitter random sources. Denoting the combined

one-sigma variance as a(t),

2 2
2 (0.36 Ts )  .

02 (t) +t 0lot

Using the previously defined value for Ts,

T. = .602 .712 H/ + T p
s 1/3 p
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and using a differential of T to convert the time uncertainty a(t) into
S

an H1/3 uncertainty gives

.428 H1/3 AH1/3
AT 1/3 1/3

s .712 H 23 + T2
1/3 P

Equating (AT)2 with a2(t) and substituting for Ts gives a significant wave-

height uncertainty aH1/3 of

256(.712 H/3 + T )2 + .546a (.712 H /3
56(. 1/3 p j /3 + p)

H1/3  H1/3

This gives a first order solution to the one-sigma uncertainty in wave-

height resolution. In accordance with previous work [6], we adopt an 80

percent confidence bound (for a Gaussian process this bound is approximately

1.3a). Therefore

4/ 2 2)2 2 2 2
1/3 resolutio 433(.712 H/3 + T + .923a (.712 H/3 + T

H resolution =

(80% confidence bound) H1/3 At

The results obtained using the above approximate formulation may be

compared to the two previously given results and seen to be in satisfactory

agreement. Graphical results, obtained through use of this last equation,

were discussed at the beginning of this section.
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3.0 SPATIAL FILTER EFFECT AND OPTIMAL FILTER FOR GEOID DATA PROCESSING

3.1 Geoidal Data Processing Results

The purpose of this section is to present derivations and results relating

to optimum data processing methods and required data rates for GEOS-C altitude

information. The first part of this section addresses the effects of (1) geoidal

power spectral density, (2) spatial filter function, and (3) altimeter measure-

ment random error on data processing characteristics. Weighting functions are

derived for both undulation and slope filtering based on geoidal spectral data

extracted from the Skylab altimeter observations. The results are optimal in

an additive Gaussian noise, minimum-mean-square error sense and largely represent

an extension of the earlier work of Cohen and Zondek [1]. The second part of

this section gives a detailed analysis of the spatial filter effect which results

from the finite area illuminated by the altimeter. We assume that the altimeter

spatial filter effect averages over all significant waveheight spectral com-

ponents.

Results of the analyses argue that the GEOS-C altimeter will be capable of

measuring geoidal components to a short wavelength cutoff in the neighborhood

of 20-40 km.for geographic regions containing pronounced short-wavelength

features. For a satellite ground-track velocity of -7 km/sec, this corresponds

to a Nyquist frequency of -0.3 Hz. Taking this Nyquist rate and the time-expanse

of the derived weighting functions as a measure of the geoidal information rate

of the altimeter, the GEOS-C 10 sample/second data base is considered to be

more than adequate.

Figure 3.1 displays a power-spectral-density (PSD) plot for the Puerto

Rican Trench region which was computed using fast Fourier Transform methods

and a Hanning type convolutional window. The data base comprised SL-2, Pass 4,

Mode 5 with 100 and 130 nanosecond pulsewidths (pulse compression was not

functioning during SL-2). The Puerto R-ican Trench data was used since we desired

to obtain PSD results for an anomalous region, which should contain more energy

in short-wavelength components than anomaly-free regions. The PSD so obtained,

and data processing results derived therefrom, should represent the best

opportunity for the altimeter to obtain information relating to short wavelength

undulations and should yield an approximate upper bound on data processing

requirements.
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Referring to Figure 3.1, the dashed line corresponds to the density level

for which a 5 Hz rectangular bandwidth, white noise spectrum would yield.an rms

level equal to 0.5 meters. Since the S-193 tracker has approximately a 3.3 Hz

equivalent noise bandwidth, this level consititutes an approximation to known

GEOS-C intensive-mode system characteristics. The noise level shown in the

calculated spectrum represents the Skylab altimeter noise level (1-2 meters rms).

We will subsequently verify that the spatial filter function corresponds to

considerably shorter wavelengths (less than 10 km) and that the calculated PSD

is not contaminated by the altimeter footprint effect.

Note that the observed spectrum represents an asymptotic behavior which in

the frequency parameter (f) is approximately f-4. As discussed in [2], Kaula's
-3

:model of one-dimensional spectral behavior behaves as f-3

Since observable geoidal components are of much longer wavelengths than

spatial filter effects, we interpret the data in Figure 3.1 as a cut thrbugh a

two-dimensional spectrum. In wave-number space (kxky) a directional spectrum

S(k ,k ) with a k behavior will yield a one-dimensional asymptotic behavior

of k- (due to integration over the angular coordinate of the polar coordinate

set). Therefore, we feel that the observed spectrum depicts the proper theo-

retical behavior.

The optimization technique we use is the Wiener-Hopf formulation, which

for the correlation functions R(.) of signal s and observation y, gives the

optimum impulse response h (t) as the solution to the integral equation [3]

Rsy( T+n) = ho (V)R y(T-)dp T>0.

0o

For non-real time processing, an estimate of a value at time t can be based on

both past and future values. Therefore, the proper lower limit on the integral

is -- and the integral equation becomes a convolution form which is readily

solved by transform theory. "For our purposes the form of the solution is [3]

H(w) -S(w)+N(w)

where S(w) is the geoid undulation power spectrum and N(w) is the additive noise

spectrum. Since the altitude tracker has a noise equivalent bandwidth of -5 Hz
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and a random error standard deviation of ~0.5 m, N(*) may be represented as a

white noise spectrum with a density of (.5) 2m2 /5 Hz = .05 m2 /Hz or 7.96 x 10- 3

2
m /radian. Using the break-point approximation (the asymptotes of which are

shown in Figure 3.1) to S(w) as

71.66 * 6.554 x 10-

w4-.0512 2 + 6.554 x 10-

the optimum transfer function is found to be

5.9
H =

o -.0512w 2 + 5.9006

This function is also shown in Figure 3.1. Note that the asymptote is twice as

steep as the spectral decay. At the intersection of the break-point spectral

approximation and the GEOS-C noise level (which occurs at ~22 km), Ho()

introduces an attenuation of -12 dB. The 3 dB attenuation point occurs at ~40

km.

Figure 3.2 shows the spatial filter response function for the GEOS-C system,

which is derived in section 3.2. Note that the solution [Ho(w)] given above

effectively truncates geoidal data at considerably longer wavelengths than does

the spatial filter effect (its 3 dB point occurs at ~10 km). Had this not been

the case, a considerably more involved Wiener-Hopf form would have been required.

The optimal filter Ho(w) has been inverse Fourier transformed through use

of contour integration, and the normalized impulse response found to be

h(t) = e-08755t(cos 1.289t + 0.6792 sin 1.289t) for t>0.

Knowing that the optimal geodetic slope filter is the derivative of the

optimum undulation filter, the impulse response for slope estimation is

d h(t) -0.8755t
= -0.8755 e (cos 1.289t + .6792 sin 1.289t)

dt

-0.8755t
+ e (.8755 cos 1.289t - 1.289 sin 1.289t) for t>0.

The undulation filter impulse response will be an even function of time, whereas

the slope filter impulse response will be an odd function [1]. Both response
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functions are graphed in Figure 3.3 and tabulated values are given in Appendix

A. This figure shows the overall characteristics of the two filters; for

digital computer implementation the response functions must be truncated and

properly re-normalized. To insure that the long wavelength structure is

invariant under discrete-time filtering, the truncated convolution weighting

coefficients should sum to unity. Also, in application of this form of

filtering, the geoid power-spectral density of the actual area of interest

should be investigated and the mean square error properties, given by

e = (w)N()dw,

should be compared with weighting functions which are computationally more

efficient (e.g., rectangular or arithmetic moving average). It is interesting

to note that the time expanse of an ideal rectangular impulse response function

which has a sin x/x frequency domain response that matches H (w) at the 3 dB

point, corresponds to an averaging period or impulse response width of 2.22
-1

seconds. The h (t) form shown in Figure 3.3 has a width at the e points of

-2 seconds.

.f.
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3.2 SPATIAL FILTER EFFECT

3.2.1 Background Discussion

The term spatial filtering effect as applied to radar altimetry denotes

the ideal, i.e., noise-free, capability of the altimeter to resolve surface

features. Spatial filtering is inherent in an altimeter system because of the

non-zero width of the system point-target response. Thus, even if we consider

the measurement process to be noise-free, the above factor limits the ability

of the system to "map" small scale surface features.

Typically, one calculates the radar footprint radius R for pulse-length

limited geometries from the relationship

R = T

where h is the satellite altitude, c is the speed of light, and T is the radar

pulse length. It is then assumed that the footprint diameter (2R) approximates

the minimum surface wavelength which the altimeter can measure, and that the

altimeter response is essentially flat for surface wavelengths greater than

2R and zero for wavelengths less than 2R. In essence then, the altimeter is

treated as an ideal (rectangular) low-pass filter whose cut-off frequency is

determined by the transmitted pulse length. While such a characterization of

the altimeter may be sufficient for "order-of-magnitude" calculations, it is

inadequate for more precise system modeling. The problem of specifying altitude

sampling rates and optimal data filtering require that the asymptotic (high

frequency) behavior of the altimeter spatial filter characteristics be investi-

gated.

In a previous work [4], approximate formulas were obtained for determining

the effect of a one-dimensional, sinusoidal, corrugated surface on the mean

return waveform. Upon further analysis, we have determined that the approxi-

mations used to obtain those formulas are not always valid. In this report we

correct this formulation for the scattering process to obtain the effects of

the surface on the mean return waveforms. For the GEOS-C altitude, pulse width

and split-gate tracking-configuration we obtain results which illustrate the

sensitivity of the system to surface undulation wavelengths.

For the purposes of this report we will represent the geoidal surface

undulation as a single sinusoid of small amplitude and very low frequency. In

other words we will assume that on a very localized basis the geoidal perturba-

tions of the mean flat sea may be represented as a sinusoid of relatively small
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amplitude and low frequency. The analysis could be extended to the case of two

or more surface harmonics; however, the analysis and computations become

prohibitively tedious.

The geometry of the problem is shown in Figure 3.4 along with a definition

of pertinent terms. We assume that the surface undulations vary in one

direction only. That is, the deterministic component of the surface height may

be represented as

z = a sin(k scos - CL )

where as is the peak amplitude of the undulation, ks = 21/Xs is the wave-number,

and a is the "phase" of the surface directly beneath the altimeter. For the

time being, the altimeter will be considered to be fixed relative to the surface.

3.2.2 Determination of the Mean Return Waveform

The mean return waveform is given by the following expression [5]

2r 2
2 Pt(t- 4 -)G2,o)

Pr(t) (4r) r4 dA

SCATTERING
AREA

where t is the time relative to the time of transmission and dA is the elemental

scattering area on the ocean surface. For purposes of this analysis, we consider

the altimeter antenna to be nadir pointed, thus w = 4 and 0 = 9. We also will

only consider the case of pulse width limited geometries and very short pulses,

i.e.

X2G2(t- 2r

P (t) t dA (2)
(4r 73, r

where Go is the boresight gain of the antenna and aO is the surface scattering

cross-section per unit scattering surface at 00 angle of incidence. If we

define r as the distance from the altimeter to the point on the z = o surface

which is at the same ridial distance p as the intersection point of r with the

true mean surface, then from Figure 3.5

r = r - 2 '
o Vl+(-P/h)
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where r= j +h2 and zs  assin(ks~ cos-as); thus

2r 2z

2r o s
t - = t - -- + l/

where c is the speed of light. For j<<h,

2r t 2h p s
c c ch c

Equation (2) becomes

SG 2 O Pt(t 2h 2z

P r(t) 4 h c dA. (3)

(4) ro

-4 -4 2h
where we have approximated the r factor bt ro . Substituting T = t - c

and approximating dA by id'~d , i.e., we integrate over the z = 0 plane but

retain the zs dependence in Pt, yields

-2. 2z

2G2 0 P(T - c s
2hr(T + )4 'dd. (4)

r(4 ) 3 r
0

We now take the transmitted pulse to be Gaussian, i.e.,

2
t

202
Pt(t) = PTe

then (4) becomes

2 2 2z 2
22 0 (T + sP)

2h X op T  f e 202 hc c '?dd (5)

r c h (4) 3  e (1+ /h2 ) 2

o o

2O

Substituting ' = in (5) yields
G ch

2h 2G P c 27 2

(T+ ) f Iexp - -(p-T-2zs/c) dpd4 (6)
r c 2h3 ( 3 22

o o
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where we have ignored the factor (l+cp/h)-2 since it has little effect relative

to the Gaussian dependence on p. With the change of variables in P, zs becomes

zs = as sin (ksT hVipcos - as)

After some trigonometric manipulations, the exponent inside the integral in

(6) becomes

4a

[p-T-2zs/c] 2 = (p-) 2  -(p-r)sin(ks Vcp cos - aS)

2a 2

+ - [1-cos(2ks cp cos - 2a )] (7)

We then use the following identities [6] to remove the last two factors from

the exponent:
2 a

exp --j(p-T)sin(Scos¢ - as  (x)
ca

+ 2 E (-1)m I2m 1 (x) sin (2m+l)(Bcos -as)

m=o

+ 2 (-1 )m 12 m(x) cos 2m(Bcosp-a x )} (8)

m=l

and
2 2

a a a
exp - 2 2 +- cos(28cos - 2s) = exp -(Y )

+ 2 In(y) cos 2n(cos -a s (9)

n=l

where

= ks cp

2a a2
s sx = 2P-c) y 2 2

co c .a
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and the I (.) are Bessel functions of the second kind and order n. Taking the

product of (8) and (9), expanding the trigonometric in series of Bessel

functions of the first kind and integrating term by term yields the following:

2 a

2j2 Sc

exp - [p-T- -2 d = 2T e Io (x )  (y )

02
o

+ 21o(x) In (Y)Jo(2n )cos(2nas)

n=1

- 2 (-l)m I2m+1 (x) In(Y)
6n,o [Jo([2m+l-2n]8)sin([2m+l-2n]as)

m=o n=o

+ J ([2m+l+2n])sin([2m+l+2n]c s )]

+ 2 . (-l)m 12m(x)l n,o Jo([2m-2n] )cos([2m-2n]as)

m=1 n=o

+ J ([2m+2n])B)cos([2m+2n]s)4

where-

S1/2 
n 

= o

no 1 n = 1,2,-..

Rearranging and changing the indices on the various terms in the above leads

to the following result;

2 a2 (P-T) 2  a 2

exp -- 2 T c 2we 2 2

.mI (oI (y)6 6n=o ([m-2n])
m=o n=o
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1+(-1) mcos cos([m-2n] ) - l-(-l)m  cos(m-l)sin(m-2n )

+ J (m+2n]) +()mcos os ([m+2n]s

-[l-(-l)m]cos[(m-1) ] sin([m+2n]s)1 (10)

Equation (10) is the result of integrating (6) with respect to the -variable;

it is exact in that no approximations were employed to obtain (10) from (6).
The right hand side of (10) may be simplified considerably when

2a
s

y =c202 << 
1,

or the pulse length is much larger than the peak amplitude of the sinusoidal
undulation. Under this condition we note that

n
I (y) Yn 2nr (n+l)

and we only need to take the first two terms in the In series. Thus, the mean
return waveform is given by

a 2 1 22 2 s [p-T]

r c 3(4r) 3h3

0

Im(s[ p-T] m, [(-l)m+l cosm-- [Jo (mks hcp) cos (mas)

m=o

as
+ )2 ij ([m-2] ks1 v2cp)cos([m-2]s)

+ J ([m+2]ksV ' p)cos([m+2]s)] -[l-(-l)m]cos(m-l)

[Jo(mks/icp)sin mas + ) 2 Jo([m-2]ksS hcp)sin(m-2]as
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+ Jo([m+2]ks /cp)sin([m+2]t s )  dp. (11)

Equation (11) represents the mean return waveform scattered from a unidirectional

sinusoidal surface under the following assumptions:

(a) pulsewidth limited geometry, and

(b) the peak amplitude of the surface undulation is small compared

to the pulsewidth, i.e., « << C .

Expanding the first few terms of (11) yields

a 2  1 2

a 22a
S+(A ) 2 Jo(2ks hp)cos 2a]-2 I1 (-[p-TI)

1- os aI s( 2 -]c

[ Jo(ks hcp)sins + ( O)  o(ks hcp)sinas + Jo(3ks hcp)sin 3as

2a a 2

-212 c(2ks  hcp)cos 2a + (s) 1
co

2a j

+ Jo(4ks cp)cos 4 + 2I 3 (-- [p-T]) o(3ks c)sin 3a
cO

+ +-( )2o(ks+)sin s J o(5ks h)sin 5aslj +- dp. (12)

Of all the terms appearing in (12), only the first can be approximately

integrated in closed form. For as <<c , as shown in Appendix B.,

0 1 2 a 2  2

e 20 ( -[p-T])dp 2 erf(---) + e cc o 1 2s

c2 a v0 c a

2a
Thus, 22 s 2 2

2h / s
P (T + 2-) G 3 e  erf( + I (

c 3 3 o 22
(470 h 1 c C
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a 21 2
-(s) -2 ) 2a a 2

+ e Jc e 2ao -])() Jo(2ks hi)c6s 2at
ca

0

- 211 I(-s-T) J (ks )c)sin s + 2 J (ks Ec)sin

ca

2a

+Jo(3ks Y9cp)sin 30ct8  -212 (--[P--T]) Jo(2ks Ap)cos 2as

Jo(3ks -cp)sin 3as + 2 o(ks cp)sina s

+Jo(5ks c)sin5al+* dp (13)

and since

a2 2

T)a

e cC erf( - + I (s) erf(T-) + 1, (14)0 2 2
SV/2 co 2

the first square bracketed term in (13) is essentially the flat-sea mean
2as

scattered return. The term in (13) involving 2co[p-t]) which is independent

of k is a higher order correction to (14) which may be ignored when as/c<<G.

The remaining terms in (13) depend on ks and thus exhibit the dependence of

the mean return waveform on the surface wave number. Provided k s VTc is not

too large, the dominant term inside t-6'integral in (13) is

S 21 2

2a2a
-2sina s  e 2l(- [- -T o)Jo(ks YWc)dp.

ca

The exact value of k s Ac for which the above term no longer dominates the k s

dependent terms in (13) is not analytically obtainable, but may 
be readily

determined by numerical integration of (13).
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For a flat sea, the mean return waveform is a convolution of the five

following factors:

(a) transmitted waveform,

(b) flat sea impulse response,

(c) radar observed waveheight distribution

(d) radar receiver impulse response, and

(e) tracker loop time positioning jitter.

However, for the non-flat sea surface such as we are dealing with in this

example, it is not possible to deal with an "undulating sea impulse response"

or the analog of (b). That is, if we found the response of the undulating

surface to an impulse function, the response to another pulse shape would not

be equal to a simple convolution. This can be seen by referring to equation

(1). The convolution property arises because for a mean flat sea, dA=rdrd

and the -integration can be accomplished independent of r and the argument

of Pt remains as the difference t-2r/c. For the undulating sea dArdrd4 and

r is a function of both - and -; thus, after performing the G-integration in

(1) the argument of Pt will not necessarily depend on the difference t-2r/c.

For this reason, the concept of a "undulating sea impulse response" has no

meaning. In fact, the concept of linear scatter theory or the entire multiple

convolution model of the process may be questionable; for conditions under which

geoidal and ocean surface wave lengths are of comparable length. However, this

topic is much beyond the scope of this investigation.

For the purposes of this report, we will assume the following: the system

point target response* of the altimeter is-Gaussian with a 3dB pulsewidth of

T ; the radar observed waveheight probability density function is Gaussian with

an rms waveheight equal to ass and the tracker loop time positioning jitter is a

continuous Gaussian process with standard deviation equal to aj. If we assume

that the significant waveheight of the waves (H1 ) is equal to four times the

rms waveheight, the pulse width parameter a is given by

2 2 2
C = (.508 H )2 + (.602 T ) +a

where H1 has units of feet and Tp and o. have units of nanoseconds. For the

GEOS-C altimeter system aj : 3 ns. For this study we have chosen a composite

*The point target response of the system is the convolution of (a) and (d), above.
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o of 8.16 ns. Table I shows the combinations of Tp and H 3 which satisfy the

above equation with a = 8.16 ns and a. = 3 ns. If the system point target
3

response pulsewidth is 12.5 ns then H1i,3 = 1.98 feet which is a small sea.

3.2.3 Determination of the Split-Gate Tracker Response

Equation (13) represents the mean return waveform as influenced by a

random scattering surface having a mean sinusoidal profile. In order to

determine how the altimeter tracker responds to this return waveform, we .must

apply the split-gate tracking algorithm to the return. We first normalize
2h

Pr(T + h) such as would be done by the receiver AGC, i.e.,

P (T + 2h/c)
rT r

where

X2G2PT ~o0
r =

(4) 3h3

We now integrate over the ramp part* of the normalized return to form the

function HR(ks,a ,a ) wheres s T /2

HR (ks,a ,a)=F P(T)dT, (15)

-T /2

TABLE I

Combinations of pulsewidth and significant waveheight which yield a = 8.16 ns
with aj = 3.ns.

p H1/3
Pulsewidth (ns) Significant Waveheight (feet)

8 11.55

10 9.1

12.5 1.98

*For GEOS-C the tracking gates have the same width as the system point target
response, i.e., Tp.
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while the plateau gate function H p(k s,a , s) is formed by integrating Pr(T)

over the same time interval but starting at a time well into the plateau

region of the mean return, i.e.,
T+Tp/2

Hp (k ,as ,as)=fPr (T)dT, (16)

where T >> T . -Tp/2
p

When a = o, the normalized mean return becomes

lim P () = [l+erf( ) ],
as+o r 2 a 7

thus

T

H(ks,as = o,as) = 2F a(-- ) (17)

and

Hp(ks,a = o,ra) = JTr aT (18)

Comparing (17) and (18) we see that

HR(k5,as = o,as) =! H (ks,a = o,as) (19)
ksas s) =2 p s

and, thus, for the mean flat sea, the tracking law is satisfied when the

integrated ramp and pleateau gate values are defined as in (15) and (16).

In the actual system the altitude tracker develops an error signal for

each received pulse, each of which is an ensemble member of the mean power

versus time- relationship of the backscattered signal. Averaging characteristics

of the closed-loop system thus provid!.a measure of mean signal properties.

Since we can only-calculate signal statistics - not individual ensemble members -

it is necessary to conceptually reverse the order of the altitude measurement

and averaging processes. This amounts to an ergodic assumption, which previous

Monte Carlo simulation studies have shown to apply. Also, since the altimeter

uses a square-law detector, the averaged video signal should correspond to the

calculated P r(t) for the noise-free case.

We further assume thai the mean return waveform as a function of k does

not differ appreciably from a shifted replica of the mean flat sea return and,
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also, that 2as/c << a, i.e., the maximum possible two-way time shift due to

the sinusoidal mean surface is small compared to a pulse length. Under these

assumptions we can mathematically replace the closed-loop tracking process by

a fixed discriminator relationship, i.e.,

t = 8 (k,a 5 ,a) - -Hp(ks,asca) (20)

where Et is the time position error relative to 2h/c and we define B such

that when ks = 0 (Xs = m) and as = r/2 or the surface is flat but as meters

below the Et = 0 sea surface then et = 2as/c.

To obtain (20) we note first of all that if T is sufficiently large (as

defined in equation (16))then

H (ks,as,tas) Hp(ks,as=O,ts) = vr a Tp,

or changes in the location of the leading edge of the pulse as a function of

ks have no effect on the plateau gate integrated value. Thus, (20) reduces to

t 8 (ksas ,a ) - r  T Tp

When k = o and.as = /2, we determine 8 so that Et = 2as /c,i.e.,

2as/c

HR(ks=o,asas= /2 )  2 O T.

When ks = o, the normalized mean return waveform may readily be obtained from

equation (6) and

r + 2a sin(-a
lim Pr( + h) - 1 + erf -as

k r c 2 [l-

2h
Integrating lim Pt c) between the limits of -T /2 and +T /2 and setting

k-o r c p P

s = 7/2, we find

(k-ck 7r / - a/JT 2a T 2a
(ks=oass = 2 ) T +( )erf(--- -
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T 2a 2

T 2a T 2a 2 2 c
- ( +  s)erf( 1 + + e 20

2 c a 2 c

T 2a 2.
1 + s (21)

-- i e 2 r c

Substituting a = 8.16 ns, Tp 12.5 ns and as = 0.4 meter in the above yields

H(ks=o,as,a = /2) - T = -29.898,Hk s s 2- p

and

8 = -29.898.

The time shift of the tracking loop is therefore given by

-(2as/c) r2- T

t 29.898 HR(ks' s'a) 2 p (22)

where HR(ks,as,as) is given by (15) with Pr(T) computed from (13).

The height of a point on the surface directly beneath the altimeter is

given by

hA = h-zs

or

hA = h-a sin(kscosO-as ) (23)

where h is the height of the altimeter above the mean flat sea. The phase aS

can be put into a one to one correspondence with the spacecraft velocity in the

x-direction by the following:

a.O = k V t,

where Vx is the spacecraft velocity in the x-direction and t is spacecraft

time. Setting P=o in (23), results in the following altitude profile encountered

by,the altimeter as it moves with constant velocity in the x-direction:

hA = h + a sinas  (24)

or

hA = h + a sin(k V xt).
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From (24), we see that the time displacement, et, of the tracker should be

proportional to the sine of the surface phase angle. As noted previously, for

relatively small values of ks /vc such will be the case; however, when ks /ic

becomes large, the dependence of et on as is no longer sinusoidal.

To demonstrate the sinusoidal behavior, we return to equation (13) and

compute the AGC'd mean return in the limit of ks+o. The details of the

integrations are given in Appendix B and

2
2h J2Ti+ V 2 - as I

limP (r c2 h 2- erf(T__) + 1 + 2 a cos2cs + erf( )
li P( + ) 2 2 2 c2a vr

r 2
- (-) 2

2

2( e a ino s + s 7-Sinot

2 
T 2

a2 r -( )] as 1T 4rT
+ sin 3aJ- s 2 1 + 1 + erf(--) - 4 e

2c2a as 2

a 2

.[cos 2cs + 1(5) (l+cos 4s)] +

and T

2 2

S2h /'2T a v a
lim P(T + )dT = (T - cos 2a (T

k r c 2 p 2 2 C s p
s co

-T

2

-2 (- )(T ) inas (-) -sina + sin 3a(

a2 r7r a 2
- 2 (Tp) cos 2ct + ) (1 + cos 4a s  '"
2c 2a2

therefore the tracker'ioop time positioning becomes

2

lim = T (2asfC) Tp --s cos 2a -2 sina
k +o t 29.898 p 2 2 s c s

S cO
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a 2 s

2 as 2 ,  ] s [cos 2e
+ ) -sina s + sin 3a s  2c2 s

+ ls.) (1 + cos 4a s ) +-.-J.
2 cO s

Substituting c = 8.16 ns, as = 0.4 meter yields

(2a/C) 
lime s T .273 cos 2a- 2.67[sina + (.013)(-sint

k -o t 29.898 p . s: .s s

+ sin 3as)] - .273[cos 2a s + (.013)(1 + cos 4as)] + ... (25)

or
2a

lim (1.11)( -)sina . (26)
k )o t c s

The factor (1.11) is due to the fact that the integration of (13) as shown in

Appendix B is approximate while the denominator in (25), i.e., 29.898, was

exact (see equation (21)). The important point to note in (26) is that the

tracker loop time positioning is proportional to sin as .

When ks is not equal to zero, it is not an easy task to demonstrate the

dependence of et on sin a s . Because of the complexity of the integrand in

(13), it is not possible to analytically obtain the value of ks for which the

terms multiplying sinas are dominant. That is, we would like to find the value

of k such that for k < ks s -
a 2

a2

-2h y c [e Oerf + I (
Pr ( + C ) -" 2 0/ o

S2 2a r 2 2
c s 1 s 2c

- 2 sin e ( [-T])Jo(k s /hcp) 1 - ) e dp (27)

and for et we then have
a 2 _.E

(2as/c) -(-) 2 2a
E : + 22 sina e I (s[p-T o (k s rh-cp)
t 29.898 s 1 2 o s

-T o

2
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• (p-T) 2

1 - ()2 2 2 dpdT . (28)

Equation (28) can be rewritten in the following form:

2a
et = C )A(k s)sin s

where A(ks) has a maximum value of one when ks = o and it determines the

dependence of et on k s . Because of the Jo function in (28), A(ks ) will go to

zero for certain values of ks and as ks increases beyond this value, A(k s )

will change sign. A change in the sign of A(ks) indicates that while the

altimeter may be profiling the gross variation of the surface, i.e., sin as'

properly, it is interpreting peaks and valleys in the surface as valleys and

peaks, respectively. With the limited amount of computation that we have

accomplished on this problem, we have found that (28) is a reasonable approxi-

mation to (22) for ks slightly less than that value for which A(ks) goes to

zero for the second time. For values of ks beyond this point, the variation of

t with surface phase is no longer sinusoidal since other as dependent terms in

(13) become dominant. However, for spatial wave lengths at which (28) becomes

invalid, an absurd noise level for altimeter observations would be required

to permit compensation of spatial filter effects.

3.2.4 Results for GEOS-C Intensive Mode of Operation

Much of the preceding material has been concerned with the spatial filter

problem in general. In particular we have attempted to show how the sinusoidal

surface affects the mean return waveform and how this effect may be translated

into the profiling capability of the altimeter's tracking loop. We have also

pointed out some of the simplifying assumptions that can be made in dealing

with the rather complicated form of the mean return waveform. We will now

address the GEOS-C problem. As before we will assume a 3 dB pulse width (T p)

of 12.5 ns for the system point target response, a significant waveheight of

1.98 feet and a tracking loop jitter standard deviation of 3 ns. The orbiting

altitude of the altimeter will be taken as 880 km, while both the ramp and

plateau tracking gates will be assumed to be 12.5 ns wide. The system parameters

assumed represent our present knowledge of the expected final configuration of

GEOS-C in the Intensive Mode while the altitude and waveheight parameters are

taken to be nominal operating conditions.
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For the parameters listed above, we have computed the mean return waveform

by numerically integrating equation (12) including all terms out to I (2as[P-T]/

co2). All computations were for a peak surface amplitude of 0.4 m. The
T T

resulting waveforms were integrated over the time interval - T - and

the output of the tracking loop time discriminator was computed using (22).

A plot of Et, normalized by 2as/c and as a function of surface wave number and

wavelength is shown in Figure 3.6. This plot illustrates the extent to which

the profiling ability of the altimeter degrades as the wavelength 
of the surface

undulation decreases. Due to sea-state and jitter effects, the equivalent 3 dB

pulse width of the system increases from 12.5 ns to 13.55 ns. The approximate

cutoff wavelength of such a system is given by

X = 2 hc(13.55)

or Xc = 3.78 km. As shown in Figure 3.6, Xc is slightly smaller than the first

zero in et. As Xs decreases beyond the point for which Et = o, t changes sign.

That is, the altimeter indicates the presence of a valley in the surface when

it is actually measuring a peak. Near the second zero of Et, the altimeter

profiling capability entirely breaks down because the altimeter 
no longer sees

a sinusoidal surface. Thus, for Xs . 2 km the altimeter is no longer profiling

the surface. Such an observation can not be made by just examining Figure 3.6;

this statement requires that the variation of Et with surface phase, as , be

examined and compared with the sin s . Thus, the plot in Figure 3.6 should be

"cutoff" at X = 2 km.

While Figure 3.6 is the desired output of this study, it is also interesting

to examine how the mean return varies as a function of surface wavelength. The

solid line in Figure 3.7 is that portion of the normalized return for a mean

flat sea surface, i.e., a o. The dashed curve for X = 31.4 km is essentially

a shifted replica.-of the flat sea curve. It is shifted to the right (later in

time) because the nadir point on the surface is a "valley" in the sinusoidal

mean surface, i.e., assin(- s) = -as . As the wavelength of the undulating

surface decreases, the mean return shifts closer to the flat sea curve and also

begins to change shape The curve in Figure 3.7 for Xs = 6.98 km corresponds

to the -5.5 dB point on the Et versus As curve in Figure 3. Figure 3.8 illustrates

how returns from surfaces having s = 4.49 km and 2.73 km compare with the flat
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Fig. 3.7 Mean Return Waveforms Within the Ramp Gate Interval for a Flat Sea, A = 31.4 km
and A = 6.98 km.
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Fig. 3.8 Mean Return Waveforms Within the Ramp Gate Interval for a Flat Sea, A = 4.49 km
and A = 2.73 km.
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sea return. For the 4.49 km return, the portion nearest the plateau region

actually appears earlier in time than the flat sea. For ks = 2.73 km, the

entire portion of the return shown in Figure 3.8 appears earlier in time than

the flat sea return, thus giving the appearance of having been scattered from

an elevated surface. This character of the return, of course, gives rise to

the sign reversal in t', i.e., the altimeter interprets peaks in the surface

as valleys.
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Appendix A

This Appendix contains a tabulation of weighting coefficients for the

optimum undulation and slope extraction filters. The "T" column is

incremented by 0.1 seconds corresponding to the output altitude data rate.

The "H" column is a list of the corresponding weights for extracting geoidal

undulation data. The "DIHDT" column is a list of the weights for extracting

geoidal slope data. As discussed in section 3.1, both columns of weights

should be renormalized based on the truncation point selected for the data

processing.
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T= :o. 0, H= 1.0000 : DHDT= I0.00000

T 0. 10,: H= 0.9:-:::54 , DHDT= -n0.22181

T= 0.20 : H= 0.95694 , DHDT= -i0.40306.

T= 0.30, H= 0 .90915 DHDT= -0.54624

T= 0.40, H= r0.84883 DHDT= -0.6542:

T= 0.50 H= 0.77932 DHDT= -0.730I42

T= 0.60, H= 0.70366 9 DHIT= -0.77810

T= 0.70, H= 0.62451 p DHDT= -0.80082

T= 0.:30 H= 0.54420 , DHDT= -0 0209

T= 0.90m H= 0. 46468 DHDT= - .7853:3

T= 1.00, H= 0.38761 DHDT= -0.75380

T= 1.10, H= 0.31431 , DHDT= -0.71U05-

T= 1.20a: H= i.24579 DHDT= -0.65851

T= 1.30, H= 0.18281 ,DHDT= -I0.60017

T= i.40, H= 0.12589 DHDT= -0.53785

T= 1.50, H= 0.,7510D-01, DHDT= -0.47359

T= 1.60, H= 0.311:2D-01, DHDT= -0.40913

T= 1.70, H= -0.65511D-02, DHDT= -0.34592

T= 1.830, H= -0.38078-l1 DHDT= -0._2851'.

T= 1.90 H= -0.63694D-01, DHDT= -0.22786

T= 2. D0O H= -0.837S0D-019 DHDT= -0. 17468
T= 2. 10, H= -0.'::98777-Il DHDT= - l..2615
T= 2.2:0 H= -0.10917 DHDT= -0.82623-01.I

T= 2. 30, H= -0.11547 DHDT= -0.44247D-01

T= 2.40, H= -0.11:18 - HDT= -0.11052 0-01

T= 2.50, H= -0:. 11784 , DHDT= 0. 17057D-01

T= 2.60, H= -0.11493 , DHDT= 0.4 0272D1-01

T= 2.70, H= -0.10993 ,DHDT= 0. 58862- 01

T= 2.: 0, H= -0.10330 fHDT= 0.73 15 3 - 01

T= 2.90P ; H= --0.95429I-019 DHIDT= 0.835:32-01

T= 3.0': H -0.86704D-'1., DHDT= 0.903':2-01

T= :. 10 I H= -0.7745:3D-1, HDT= 0.94124D-01

T= 3.20, H= -0. 67966DEt- 0, IlDHDT= 0.95171- 01

T= 3.3 0, H= -0.583493-01, DHDT= 0.93936D-01

T= 3.409 H= -0.49241ID-01 DHDT= 0.9 081 OD- 01

T= :3.50 H= -0.40380D-l, DHDT= 0.86168D-01

T= 3.60, H= -0'.32046 '-':1 , DHDT =  0. 80357- 0 1
T= 3.70 H= -0.24337--01, DHDT= 0.73-692D-01
T= 3.80 P H= -0.17326D- 1 DHDT= 0.6646O- 01

T= 3.90, H = - -0.11056-O -I DHDT= 0.58913D-01

T= 4.00 , H= -0.55475D-02, DHDT =  0.51268- 11

T= 4. 10, H= -0.8003:30D-03: DHDT= 0. 4:37111-01

T= 4.20i' H= 0.3-J1D-02, DHDT= I'0.36397D-01

T= 4.30 :, H= 0.64905D-02: DHDT= 0.29449D-01
T= 4.40, H= 0.91064D-02, DHDT= 0.22962D-01
T= 4.50P H= 0. 1110 I- 01 , DHDT= 0.17 006 - 01

T= 4.60, H=  0. 12526-01 DHDT= 0. 1 1163 OD- 01

T= 4.7:1, H .13445D- 1 DHDT =  0.6858 : D- 02

T= 4. 0, H=  0. 1317D-01, DHDT =  0.2 7003-02

T= 4.90 H=  0. 140:04 -01 DHDT = -0I.84 949'- 0:3
T= 5. 0, H= 0. 13766D-01 DHDT= - I0.38102:1- I02
T= 5.10, .H= . 1326- 11, HDT= - 0.621 07- 02

T = 5.20I H=  0.12541D-01 DHDTT= -0.808i1:76i-02

T= 5.30, H= 0. 116583 D-01, DHDT= -0.94832-':02
T= 5.40: H= . 10658:-01 , DHDT= -0.10444D-01

T= 5.50, H= 0. 958'E22'D-02, DHDT= -0.11018:- 1

T= 5.60, H= 0.8465D- 02, DHDT= -0.11255D-01
T= 5.70, H=  0.73405D2-02, DHDT = -0.112104-01
T= 5.809 HE 0 4.62329n-0 DHDT= -0.10912D-01
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T= 5.90; H= 0.51646D-02, DHDT= -0.10424D-01
T= 6.00, H= I.41531D-02, DHIT= -0.?7831 r-02
T= 6. 1 0, H= . :32117- 02, DHT= -0. 90275D- 02
T= 6.2 0 H= 0.23502- 02, DHDT= -. 1 927i-022
T= 6..30, H= 0. 15748-02, DHDT= -0.7309D-02
T= 6.40, H= 0.88898 ::: D-03, DHDT= -0.64063D- 02
T= 6.50, H= 0.29355D-03, 1DHDT= -0.55055D-02
T= 6.60, H= -0.21277D-03, DHDT= -0.46270DI-02
T= 6.70, H= -0. 63303D-03, DHDT= -0.:37:868:-02
T= 6.80, H -0.97172 - 3, DHDT= - 0.29973D- 02
T= 6.9 0 H= -I0. 1 44D-02, i DHDT= -0.'226 1ID-02
T= 7. 0, H= -0.14274D-02, DHDT= -0. 16055D-02
T= 7.10, H= -0.15578:-02, DHDT= -0.10137D-02
T= 7.20, H= -i0.16325D-02, DHDT= -0.49446D-03
T= 7.30, H= -0. 16590D-02, DHDT= - . 47607D-04
T= 7.40' H= -0.16 i44D-02 DHDT= 0.32853D-03
T= 7.50P H= -0.159541-02, DHDT= 0.63695D-03
T= 7.60P H= -0.15190D-02, DHDT= 0.8:-167D-0:1:3
T= 7.70, H= -0.14210i-02, DHDT= 0.10675D-02
T= 7.80F H= -0.13:072D-02, DHDT= 0.11997-02
T= 7.90, H= -0':. 118:26D-02, DHDT= 0. 128401-02
T= . 00, H= -0.10518D-02, DHDT= 0.1:263?-02
T= 8. 1, H= -0.91853--O:3, DHDT= 0.13323D-02
T= 8.20, H= -0.78:629-1-3, DHDT= . 13077D-02
T= 8.:30 H= -0.65782D- 03, DHT= 0. 1258D-02
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Appendix B

In the course of the analysis presented in section 3.2, it will be

necessary to evaluate integrals of the form

I e I 2I ( [P-T)) dp (BI)

0n

The purpose of this Appendix is to demonstrate how these integrals may be

evaluated. First, we substitute n = p-T in (Bl), then

2a
0Sf s

- I 2a
I = e I 2 n d

n ca
2

-T

which can be split into two integrals, i.e.

2C n 2  O0 n 2
a 2 a /2a

I = e I n d + e I. -n dn (B2)

.0

The first integral can be found in standard references on integrals of

Bessel functions and

eas Ind (ae I

c2 2 n/2 c 2 (B3)

O

For the second integral in (B2), we will only be concerned with that portion

of the return for which ITI< T S2*, thus

2a 2a T

Ca2 ca2 2

Because of jitter and sea-state effects, the 3dB pulsewidth of the system

*Ts is defined as the 3 dB width of the system point target response.
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point target response will always be less than or equal to 1.67a-, thus -

2a a 1.67a
-s- II < 2 (1.670)

For the case to be considered here, as = 0.4m and a = 8.16ns, thus

2a
-- In! < 0.272

Therefore, for the second integral in (B2) we may use the small argument
2a nj

approximation for I ( / 2) or

2a
/2as (c I)n T

I -2- I <-2nf (n+l)

Therefore, for T < o

o n2  2a o 72

s cnn
e In( -C  n) d f e dn

co 2nr(n+l) -r

while for T > o

10 2
o F2  22a o _
( 2a /

- I 2as cY (-1 )n e ndn
n c07 ) 2nr(n )

The above integral can be evaluated by noting that

o o0 2

f -a d = im 2 nI d nf 2 12 - 2bnd
. e nndn lim -n -

-T -
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b
2

= dn e a erf ( ba + b

b + (-2)n2V a dbn  L
-T

Thus,

0 
T) 2

o - erf (-)

e d = 2 erf r
2 aCF

-T 2J -/ T
Te drl =- 2 •+e

fo - 2r5r [ 4 T
ne drl = 1 1 + erf - e

-T

and

r)2
o - 2( B2a

e Io 2a- T d er f / _(B4

2 2
-T

n2 (/oy

2I1 w n d Z - q 2co s - e (B5)

r2 n dn s - - e (6)

4C2e2 1 + erf e 2r

-T

where

.T>O

- T < O

a

If we also use the fact that( S/c )2 << 1, then

2

10 ca
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a

(a 2 2

2 

2 2

and substituting the above in (B3) and using (B.4), (B5) and (B6), we have

Sa1 ( 2  
S2a

je Io s [p-T ]dp 2 e + erf

00 1 2 s
0ca-c 2 c as

fe 1 c2a [p-T] dp ~ 2 e c--r

1 (a2 )

e T12 ( 2a [pT] dpy e [yr

+ 4 1 + erf - T e

or after combining terms

(p) 2 2a a a ) 2
eI c-z vr[2-T e + erf

0

[-T c- -dp -S -e
foaC -
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1 2F - R ( 2a a2 r
e [p-T] dp z -2a e + 1 + erf

I 2 co 420 e2 ef -G)

_ 2

AT e

If we substitute the values of a (8.16ns) and as (0.4m.) in the above

coefficients of the bracketed terms we find that

- 10.22

a
s _ 1.33

a 2 /277

s = 0.136
4c2a

Thus, each coefficient decreases by an order of magnitude. from the prior

value.
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4.0 ALTITUDE-WAVEFORM BIAS EFFECTS AND POINTING:ANGLE ESTIMATION -

4.1 Waveform Bias Effects on the Altitude

The GEOS-C radar altimeter employs a split-gate time discriminator to

extract altitude error on a pulse-by-pulse basis. A typical split-gate

arrangement is shown in Figure 4.1 along with an idealized "flat-sea" average

return waveform. A discriminator curve is generated by integrating the return

waveform over the time extent of the ramp and plateau gates, multiplying the

plateau gate integrated value by 0.5, and subtracting this value from the

ramp gate integrated value. A typical discriminator curve is shown in

Figure 4.2. The discriminator curve is a function of the time variable tg

which is defined (in Figure 4,1) as the shift in position of the two gates

relative to the mean return waveform. For purposes of this study, we will set

t = 0 when the center of the ramp gate occurs at a round trip delay time of

2h/c where h is the true altitude of the altimeter above mean sea level and c

is the speed of light. Since the ramp and plateau gates are separated by a

fixed time interval T, a shift in the ramp gate also results in an equal shift

in position of the plateau gate. It should also be noted that when the center

of the ramp gate occurs later (or earlier) in time than 2h/c, tg will be

greater (or less) than zero.

The three most important characteristics of the discriminator curve are;

(1) the width of the linear position of the curve, (2) the slope of the curve

about c(t ) = 0, and (3) the shift (or bias) of the intercept or E(t ) = 0
g g

from the t = 0 point. A large linear range of the discriminator curve

is desirable since it permits a one-to-one correspondence between E(t ) and

t for large tracker excursions. The slope must be selected based on sensitivity

and stability criteria which are dictated by the design of the remaining portion

of the tracker loop. The bias or shift of the (t )= 0 point away from t = 0
g g

is a consequence of changes in the mean return waveform [1]. All of the above

three characteristics are functions of the mean return waveform. In this

study, we will investigate how the linear range, slope and bias of the GEOS-C

discriminator curve depend on pointing error and sea-state. We will also

investigate a slightly different gate configuration which results in a reduced

bias for small or moderate waveheights without any sacrifice in the discriminator

curve's linear range or slope. This alternate gate configuration demonstrates
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the desirability of an adaptive tracker system. No consideration was given

to a 3 or 1 ns system since the results presented here for a GEOS-C type system

indicate that the bias errors will be very small and in addition, knowledge

of the "sea-state" will permit correction of the bias to a very small value.

4.1.1 Analysis

The mean return waveform for short-pulse altimeters operated at or near

nadir is a convolution [2] of the system point target response, the flat-sea

impulse response, the waveheight probability density function, and the tracking

loop jitter. For purposes of this study, we will ignore the tracker loop time

jitter since it will be relatively small for GEOS-C, i.e., a. ~ 3 ns. A

Gaussian function will be used to describe the system point target response

-since previous studies [3] have shown that this is a reasonable approximation.

That is, if we denote Ppt as the point target response, then

2

pt(T) = e P (1)

and the half-power pulsewidth (PW) is related to the standard deviation of the

Gaussian approximation (op) by the following,

2 2
a = 0.181(PW)

Similarly, the waveheight probability density function will be assumed to be

Gaussian, i.e.,

2

(-i--)
"1 2a2

P (z) = e (2)

where as is the rms roughness of the ocean surface. The convolution of (1)

and'(2), with z converted to two-way ranging time, yields the following

Gaussian function

2

- 2p 2
P (T)*P ss(z) = a e (3)
pt ss



68

where

20a 2
a = () + 1.

P

For the Intensive Mode of GEOS-C, we are dealing with a pulsewidth

limited geometry, thus we need only consider the shape of the antenna pattern

very near boresight in computing the mean return waveform. We may, therefore,

approximate the antenna pattern as circularly symmetric and Gaussian, i.e. ,

2 2
GA() = Goe Y sin (4)

where G is the boresight gain, 8 is the angle measured with respect to

boresight, and y is the antenna pattern taper factor. If we match (4) to the

measured pattern at the 1/2-power point, we find that

y = 2.895 sin 2 BW), (5)

where BW is the 3 dB beamwidth of the measured antenna pattern. Under the

Gaussian antenna pattern assumption, it has been previously shown [3] that the

flat-sea impulse response is given by

G2X2c 2 0()e 2
o 1 4 cos

P.(T,) = 33xp 2

p ( + 1) (-+ 1)

- 1-( + 1) jsin 2 ] (-l)nr(n+1/2)
2h r(n+l)

n=o

cT 2 4 sin 2~ 2
I + 1)2-1 4 2 tanC ( + 1)2-1 (6)

n 2h + 2h
(-+ 1)

for T > 0 and Pi(T,E) = 0 for T < 0, where is the pointing angle of the

antenna boresight with repsect to nadir. The complete mean return waveform

is convolution of (6) and (3), i.e.,
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Pr (, - rf [ C+ 1- 3 exp - cos2 - ( + sin 2
o (T + 1)2

Go

exp _ 2 (T-) (-l)nr(n+i/2) i [4
exp 2  r(n+2) n + 1)2-1 4 sin 2

22 L(n+l 2h2
p n=o Y(2h + 1)

n

anE ( +1)2_1 dT, (7)

where

G2 2c ri o() 2Os  2 -1/2
S= o (- -) +1

(4) 3h3L p

and the In(*) are Bessel functions of the second kind and order n. If we let

x = T/ _ / and q = oa a/h /2 then (7) becomes
p P

Pr(T,E) a= p t [qx+l] exp - 1 qx + 2 - - (qx+1)2sin2
r P f Y +(qx+) 2

I an{ (qx+1)2 dx (8)

For GEOS-C, the point target response half-power pulsewidth (PW) will be

assumed to be 12.5 ns; .thus, a = 5.32 ns. Since the beamwidth of the GEOS-C
P -3

antenna is about 2.6 degrees, Y = 1.49 x 10 . The altitude of the GEOS-C
-6

spacecraft will be about 880 km, hence q = 1.28 x 10 Provided we restrict

the range of T to less than, say 500 ns, we can ignore all terms in the
th

series in (8) except for Io() since for F < 3o the factor raised to the n--
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power is very small but dominant. To evaluate the remaining integral, we note

that all terms inside the integral show a small variation compared to the

Gaussian pulse shape factor, and also

-2 2 2
1-(qx+l) cos 2 1-cos 2(1-2qx)

= sin2  + 2qx cos 2

and

[1-(qx+l)-2 ]sin2 2qx sin2

and

/(qx+l)2-1 . 2qx.

(qx+l)2

Hence, for 0 < T < 500 ns and E < 30,

Pr (T,) Fa cp V5 exp - ~sin2~ + 2q Tcos2 ]

P

-(-X+ 2
sin2 I e p dx (9)

or

4 2  4c
sin --cos2 T

Pr(T',) = Po c t e e h
p

I 4 , sin 2  )11+er( . (10)

y - 2 a " (

When T < 0, we see from (8) that the correct expression for Pr(T,5) is

4 2

Pr (T,) 5 rC a /i e T 1+erf ( . (11)
0 I (11



71

The approximate expressions given by (10) and (11) have been checked with

results obtained by numerically integrating (8) and the agreement was found to

be excellent.

We normalize (10) and (11) to account for the action of the AGC and form

r (T, ) where

Fr(, ) = iX(T) {[l+erf ( T) ] , (12)

p

and 4c cos2 T

e h (4 c~s sin2 /) 0 (13)

o() =

i T < 0.

The discriminator curve is obtained by integrating (12) over the time expanse

of the ramp and plateau gates, multiplying the integrated plateau value by

0.5 and subtracting this value from the integrated ramp value. If E(tg) is

the discriminator curve, then

TG TG
+ t T+ -+t

2 g 2 g

E(t f) = w(T-t r)d - w(T-T-t )P(T)dT (14)
g g r2 r

-T T
G G
2-+ t T 2-+ t
2 g 2 g

where we have assumed that the ramp and plateau gate lengths are equal and

TG = gate length,

w(T) = gate weighting function,

T = time delay between the start of the ramp gate and the

start of the plateau gate.

tg = time shift in the position of the center of the ramp

gate with respect to the total two-way delay time of 2h/c.
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For GEOS-C, the gate width TG is matched to the pulsewidth, thus, TG = 12.5 ns.

Since

and4c cos2 << 1

4 c sin 2

Y Ah-

and the argument of I (.) in (13) varies as 7i, the factor K(T) is almost

constant over the ranges of integration in (14) and

T
-+ t

2 g

S(t) A(t) w(T-t )[1+erf( T' )]dT
2 f a2

- T G  P
-G+ t
2 g

S TG
-+ t
2 g

- J w(T-T-t )[1+erf( ) IdT (15)
4 g a /2-

TG
T -- + t

2 g

We define the gate weighting function to have unit area, i.e.,

TG

2

f w(T)dT = 1,

-T

2
TG

thus -- + t
2 g

A(t ). K(T+t ) A(t )
(t 4 2 W(-tg)erf( )dT

p
-T
G + t
2 g
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TG
T+ +t2 g

A(T+t-) w(T-T-t g)erf( dT

P
T

T + t
2 g

The exact shape of the gate weighting function is not known, however, we will

assume that it is rectangular, i.e.,

1 -T T
T -- < T < --

G 2 2

T

0 - I rl> -

The time discriminator curve thus reduces to the following form;

(G2+ t g/ Ia /

C(t ) = 0.5 A(tg) 1 + erf x +
g TG

(-TG/2+tg )/,aP v/

(T+TG/2+tg)/ pC /l

ra V 2 -x2
-0.5A(T+t )[ 1 + erf x + e ) ] (16)

g T G  i

(T-TG/2+tg)/Gp /2

Equation (16) can be rewritten in a somewhat more convenient form as follows:

(t )-= 0.5 1(t )[1+S([t gTG/21/aoa V2)

-0.5A(T+t ) [+S([T+t g±TG/2]/ap /2 j (17)

where S(-) is easily deduced from equation (16). We note from (13) and (16)

that the A(.) are functions of antenna pointing angle and pattern and altitude
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while the S(.) are the gate responses to a mean return waveform which is

free of antenna and pointing angle effects. However, unlike the mean return

waveform in equation (12), the discriminator output is not a simple product

of these two factors.

Equation (16) provides a very rapid means of evaluating the performance

of split-gate time discriminator systems. It is a significant result in

itself since it results in a closed form expression. Prior studies of

discriminator optimization have been hindered by the necessity of accomplishing

a three-fold numerical integration for C(tg), i.e., a two-dimensional surface

integration to obtain Pr(T) and third integration to determine the gate response

to Pr(T). The above formula has been applied to the Skylab S-193 radar

altimeter where the pulsewidth is considerably longer (72 ns, 3 dB) and the

antenna beamwidth smaller (1.50, 3 dB). The particular combination of pulse-

width, beamwidth and altitude (435 km) for Skylab results 'in a mean return

which is neither completely beamwidth nor pulsewidth.limited. However, the

results obtained from (12) and (16) were in excellent agreement with numerical

integration calculations. We therefore conclude that (12) and (16) have a

greater range of validity than the approximations would tend to indicate. 
It

is interesting to note that from equation (11) it can be shown that the peak

of the average return power decreases as exp(-4 sin 2/y) for very near nadir

and as 1/sin2E further away from nadir. Such knowledge of the decrease in

return power as a function of pointing error is very important in designing

the proper AGC dynamic range of the altimeter receiver.

4.1.2 Results

In the following we will present results on time discriminator bias,

slope and linearity as a function of pointing angle and waveheight. Figure

4.3 shows the discriminator curve for the GEOS-C gate configuration (where

the ramp and plateau gates are separated by 50 ns (T = 62.5 ns)), an rms

waveheight of 0.1 m, and pointing angles of 00 and 1.50 off-nadir. Apart

from a shift in the bias point, i.e., the value of tg such that E(t ) = 0,

there is no appreciable change in the shape of the curve. We note that the

linearity range is about -0.3Tg tg O0.3 TG. Figure 4.4 demonstrates the

effect of a 1.0 m (rms) surface waveheight on the discriminator curve.

Comparing these results with those shown in Figure 4.3 indicates a slight

increase in bias and a decrease in slope while the linearity range increases

to -0.4T G< tg -0.3TG. The decrease in slope will decrease the equivalent gain
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of the tracker loop and increase its settling time; however, since the open

loop bandwidth is unchanged there will be no appreciable increase in tracker

jitter. Figure 4.5 illustrates the effect of a 2.5 m (rms) waveheight on

the discriminator curve. Although the linear range of the curve increases,

there is a marked reduction in slope and the bias is seen to increase both in

magnitude and sensitivity to pointing angle. Figure 4.6 summarizes the

resultant altitude bias errors as a function of pointing error and waveheight

for the GEOS-C Intensive Mode.

The rather large gate separation in the GEOS-C Intensive Mode tracker

loop places the plateau gate in that region of the return waveform which is

sensitive to pointing errors. By reducing this separation, it should be

possible to reduce the sensitivity of the bias to pointing angle. Figures

4.7, 4.8 and 4.9 show discriminator curves for a gate separation of 12.5 ns

and waveheights of 0.1, 1.0 and 2.5 m (rms), respectively. For waveheights

of 0.1 and 1.0 m, we note a reduction in bias error and sensitivity to pointing

angle without any significant change in linear range or slope from that obtained

with the 50 ns gate separation. However, when the waveheight increases to 2.5 m

(rms), there is a marked increase in altitude bias although the sensitivity to

pointing angle remains small. In addition, the linear portion of the dis-

criminator curve is no longer centered about the bias point but has shifted

to the right of the bias point. The bias errors for a gate separation of

12.5 ns are summarized in Figure 4.10 and it is noted that the 12.5 ns gate

separation provides improved performance over the 50 ns separation for low to

moderate seas but is very poor for high seas.

Figures 4.11, 4.12, 4.13 and 4.14 show the discriminator curves and bias

errors for contiguous tracking gates (no separation). We note that the linear

range of the discriminator curves are reduced relative to the 50 and 12.5 ns

gate separation curves. As shown in Figure 4.14 the bias errors for contiguous

tracking gates are much more sensitive to waveheight than the 12.5 and 50 ns

configurations.

4.1.3 Conclusions

In this study we have obtained a concise closed form expression for a

split-gate time discriminator curve applicable to the GEOS-C Intensive Mode.

Results for the GEOS-C tracking gate configuration indicate bias errors on the
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Fig. 4.14 Altitude Bias Errors due to Waveheight and Pointing Error
Effects for Contiguous Tracking Gates.
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order of a few centimeters for the anticipated range of pointing errors and.

waveheights. By reducing the gate separation to one gate width, the bias

errors may be decreased by about a factor of two for small to moderate wave-

heights. For large waveheights the bias error resulting from the 12.5 ns gate

separation increases significantly. In view of this fact; the optimum.tracker

in the sense of minimum bias error might well be one in which the gate spacing

is variable and dependent upon the waveheight. For the extreme case of

contiguous tracking gates, the altitude bias errors are much more sensitive

to waveheight than the 12.5 and 50 ns gate separations.

4.2 Pointing Angle Estimation Using the Attitude/Specular Gate

In the process of analyzing Skylab S-193 radar altimeter data, it was

determined that the pointing angle of the antenna (relative to nadir) could

be accurately inferred from the shape of the trailing edge portion of the mean

return. Although the GEOS-C altimeter does not have Sample-and-Hold gates

located in the trailing edge of the return (as did Skylab), it does have a

200 ns long integrating gate located in this portion of the return. This

particular gate has been termed the "Attitude/Specular" gate; by comparing the

time averaged output of this gate with the output from the Plateau gate, it

has been proposed that the pointing angle may be determined. The purpose of

this section is to investigate how accurately the pointing angle of the antenna

can be estimated using this technique.

Figure 4.1 illustrates how the tracking gates are nominally located

relative to the idealized return. For both the Intensive and Global Modes,

the width of the Attitude/Specular gate is 200 ns and the separation between

it and the ramp-gate is 700 ns. For this study we will make the following

assumptions:

(1) tracker jitter, aj, is much less than a pulsewidth and can

be neglected;

(2) the tracker gate bias error due to pointing error and sea

state effects is small relative to the pulsewidth and may

be neglected,.i.e., t = 0;

(3) the system point target response is Gaussian with a 3 dB

pulsewidth equal to 12.5 ns (IM) and 200 ns (GM);

(4) the nominal altitude is 843 km;

(5) the antenna half-power beamwidth is 2.60.
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Since we will be dealing with the Plateau and Attitude/Spzcular energies,

the neglect of tracker jitter and bias is certainly justified since these

effects cause relatively small changes in the location of these gates.

Let Pr () be the post-video mean return power which has not been

normalized by the AGC gain. Since we are neglecting jitter, the average

Plateau gate energy is given by

T1+TG/2

p = GAGC Pr(T )d (18)

T1i-TG/2

when the GEOS-C altimeter is in acquisition and tracking, the gain of the

AGC is adjusted so that the average Plateau gate energy is one; thus,

T1 +TG/2 -1

GAGC fr(T)dT (19)

T1-TG/2

The average Attitude/Specular gate energy is similarly given by

T2TG/2+Ta/s

ea/s = GAGC Pr()dT (20)

T2-TG/2

As per GE's proposed method for determining the pointing angle, 
the quantity

of interest is the difference, A, between ep and ea/s' i.e.,

A l-ea/s (21)

For the Global Mode, TG = 200 ns and Ta/s = 200 ns, so we are integrating over

comparable time intervals to form ep and ea/s and A will be less than or equal

to one. For the Intensive Mode, TG = 12.5 ns and Ta/s = 200 ns, and ea/s will
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be roughly 16 (200/12.5) greater than e; thus IAI>>l. To make A(for both the

Global and Intensive modes) less than or equal to one, we define AIM as

T
A = 1 e 22)

Sa/s' (22)
a/s

then using (20) for the Global mode and (22) for the Intensive mode, we see

that A and AIM will be on the same numerical scale. It should be noted that

if a/s is constrained to a certain numerical range, then there must be some

scaling in the hardware in switching from Global to Intensive mode since e

is obtained from different gate widths in the two modes.

Using the previously derived expressions for the mean return waveform,

results have been obtained for A and AIM as a function of pointing angle and

they are shown in Figure 4.15. It is interesting to note that for both modes

of operation, A is relatively insensitive to pointing angle. The reason that

the Global mode curve is less sensitive to pointing angle than the Intensive

mode curve is as follows. For the Intensive mode, the AGC gain is relatively

independent of pointing angle because the mean return waveform does not vary

appreciably (over the Plateau gate) with pointing angle. Thus, AIM is determined

almost completely by the integral over the Attitude/Specular gate. For the

Global mode, the AGC gain*decreases with increasing pointing angle while the

integral over the Attitude/Specular gate increases. Thus, the product as

defined by (20) remains essentially constant.

Since A is the difference of the mean values of two statistical quantities,

we must know the variance of A in order to state how accurately we can actually

estimate the pointing angle. There are essentially two error sources involved

in our estimation of A. The first is due to the noise-like nature of the

return signal and this is a random error. Unfortunately, it is extremely

difficult to compute Var(A) because such a computation requires knowledge of

the autocorrelation function of the non-stationary return waveform process.

The other important error is due to biases in converting ep and ea/s to telemetry

units and then back to-engineering units. In other words, there is an error

associated with the A/D and D/A conversion process. As per the system speci-

fication [4], this error is estimated to be ±1% of the recorded value. Thus,

the bias error for A is given by eb where

*The AGC gain and integrated gate values as referred to here are equivalent

to the quantities defined in (19), (18) and (20) normalized by the factor

exp[+±4sin /yI, (See Sec. 4.1, equations (10) and (11)).
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Fig. 4.15 A Plot of the Attitude Estimation Function
Versus Pointing Angle for GEOS-C with h = 843 km.
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Eb = ±.01 e -(.01) e/s

= ±.01-(±.01)(1-A)

The worst case bias error is seen to be

Sb = ± .01±.01(l-A)

= ±[.02-A]

A plot of A±eb is shown in Figure 4.16. We note that the basic errors involved

in converting ep and ea/s to telemetry units and back to engineering units

limits the angle estimation process to about 0.5 degrees. Thus, we conclude

that the use of an Attitude/Specular gate to estimate pointing angle is no

more accurate than about 0.5 degrees. On the other hand, because of the

relatively large antenna beamwidth, we question whether a 0.5 degree pointing

error will be an important factor.
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